Introduction
The AI Camera using ESP32-CAM is an advanced IoT project that combines artificial intelligence, computer vision, and IoT technology. Using the ESP32-CAM module, the system can capture images or video, detect objects, faces, or movements, and stream data over Wi-Fi.
It is widely used in smart surveillance, face recognition systems, and IoT-based security applications.
Objective of the Project
- To capture real-time images or video using the ESP32-CAM module.
- To implement AI-based object detection or face recognition.
- To stream camera feed over Wi-Fi to a mobile or web interface.
- To learn integration of ESP32-CAM, AI models, and IoT platforms.
Working Principle
The ESP32-CAM project works on image acquisition, processing, and IoT streaming:
Step-by-Step Working
- ESP32-CAM captures images using the OV2640 camera.
- The microcontroller can run AI-based models (like face detection using OpenCV or ESP32 AI libraries).
- Processed data or detection results are sent to a web browser, mobile app, or cloud platform.
- Users can view real-time video or alerts remotely.
- Optional: When a face or object is detected, the system can trigger alarms, notifications, or store the captured image.
Components Required
- ESP32-CAM Module (AI-Thinker)
- FTDI USB-to-Serial Adapter (for programming ESP32-CAM)
- Jumper Wires
- 5V Power Supply
- Wi-Fi Router for connectivity
- Optional: Buzzer or LED for alerts
Circuit Diagram
Connections for Programming and Power
ESP32-CAM FTDI Adapter
GND -> GND
5V -> VCC (5V)
U0R (RX) -> TX of FTDI
U0T (TX) -> RX of FTDI
IO0 -> GND (for programming mode)
Note: After programming, remove IO0 from GND to run the program normally.
Optional: Buzzer or LED
Buzzer -> GPIO12
LED -> GPIO13
Arduino Code Example (Face Detection & Camera Streaming)
#include "esp_camera.h"
#include <WiFi.h>
// Replace with your network credentials
const char* ssid = "Your_WiFi_SSID";
const char* password = "Your_WiFi_PASSWORD";
// Camera pin configuration for AI-Thinker ESP32-CAM
#define PWDN_GPIO_NUM 32
#define RESET_GPIO_NUM -1
#define XCLK_GPIO_NUM 0
#define SIOD_GPIO_NUM 26
#define SIOC_GPIO_NUM 27
#define Y9_GPIO_NUM 35
#define Y8_GPIO_NUM 34
#define Y7_GPIO_NUM 39
#define Y6_GPIO_NUM 36
#define Y5_GPIO_NUM 21
#define Y4_GPIO_NUM 19
#define Y3_GPIO_NUM 18
#define Y2_GPIO_NUM 5
#define VSYNC_GPIO_NUM 25
#define HREF_GPIO_NUM 23
#define PCLK_GPIO_NUM 22
#include "esp_timer.h"
#include "img_converters.h"
#include "Arduino.h"
#include "fb_gfx.h"
#include "fd_forward.h"
#include "fr_forward.h"
#include "FS.h"
#include "SD_MMC.h"
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
#include "driver/rtc_io.h"
#include "WebServer.h"
#include "esp_http_server.h"
void startCameraServer();
void setup() {
Serial.begin(115200);
WiFi.begin(ssid, password);
Serial.println("Connecting to WiFi");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
}
Serial.println("");
Serial.println("WiFi connected");
// Camera configuration
camera_config_t config;
config.ledc_channel = LEDC_CHANNEL_0;
config.ledc_timer = LEDC_TIMER_0;
config.pin_d0 = Y2_GPIO_NUM;
config.pin_d1 = Y3_GPIO_NUM;
config.pin_d2 = Y4_GPIO_NUM;
config.pin_d3 = Y5_GPIO_NUM;
config.pin_d4 = Y6_GPIO_NUM;
config.pin_d5 = Y7_GPIO_NUM;
config.pin_d6 = Y8_GPIO_NUM;
config.pin_d7 = Y9_GPIO_NUM;
config.pin_xclk = XCLK_GPIO_NUM;
config.pin_pclk = PCLK_GPIO_NUM;
config.pin_vsync = VSYNC_GPIO_NUM;
config.pin_href = HREF_GPIO_NUM;
config.pin_sscb_sda = SIOD_GPIO_NUM;
config.pin_sscb_scl = SIOC_GPIO_NUM;
config.pin_pwdn = PWDN_GPIO_NUM;
config.pin_reset = RESET_GPIO_NUM;
config.xclk_freq_hz = 20000000;
config.pixel_format = PIXFORMAT_JPEG;
config.frame_size = FRAMESIZE_QVGA;
config.jpeg_quality = 10;
config.fb_count = 1;
// Camera init
esp_err_t err = esp_camera_init(&config);
if (err != ESP_OK) {
Serial.printf("Camera init failed with error 0x%x", err);
return;
}
startCameraServer();
Serial.println("Camera Ready! Go to the IP address shown below.");
}
void loop() {
// Nothing required here. Camera server runs asynchronously
}
// Function to start camera web server
void startCameraServer() {
// Use ESP32-CAM web server examples
// Opens a live streaming page via browser
}
Note: For face detection, you can enable AI features using ESP32 AI libraries, or use Face Detection example from Arduino IDE ESP32-CAM examples.
Code Explanation
- ESP32-CAM is initialized with camera pins and settings.
- ESP32 connects to Wi-Fi for streaming.
- The web server allows live video streaming via IP address.
- Optional AI features (face/object detection) can trigger alerts, buzzer, or LED.
Advantages
- Real-time surveillance and monitoring
- Compact and low-cost solution
- AI-based face and object recognition
- Wireless streaming over Wi-Fi
Applications
- Smart home security and monitoring
- Attendance system using face recognition
- Industrial surveillance
- IoT-based security cameras for smart cities
Future Enhancements
- Integrate with Blynk or cloud platform for remote monitoring
- Add motion detection alerts via email or mobile notifications
- Combine with AI models for mask detection, intrusion detection
- Use multiple ESP32-CAMs for networked surveillance systems
Conclusion
The AI Camera using ESP32-CAM is a modern IoT and AI project that combines wireless image streaming, AI-based detection, and real-time monitoring. It is perfect for smart security applications, IoT demonstrations, and AI-based surveillance systems.
